skip to main content


Search for: All records

Creators/Authors contains: "Bulović, Vladimir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Thin‐film photovoltaics with functional components on the order of a few microns, present an avenue toward realizing additive power onto any surface of interest without excessive addition in weight and topography. To date, demonstrations of such ultra‐thin photovoltaics have been limited to small‐scale devices, often prepared on glass carrier substrates with only a few layers solution‐processed. We demonstrate large‐area, ultra‐thin organic photovoltaic (PV) modules produced with scalable solution‐based printing processes for all layers. We further demonstrate their transfer onto light‐weight and high‐strength composite fabrics, resulting in durable fabric‐PV systems ∼50 microns thin, weighing under 1 gram over the module area (corresponding to an area density of 105 g m−2), and having a specific power of 370 W kg−1. Integration of the ultra‐thin modules onto composite fabrics lends mechanical resilience to allow these fabric‐PV systems to maintain their performance even after 500 roll‐up cycles. This approach to decouple the manufacturing and integration of photovoltaics enables new opportunities in ubiquitous energy generation.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    The presence of surface and grain boundary defects in organic–inorganic halide perovskite films can be detrimental to both the performance and operational stability of perovskite solar cells (PSCs). Here, the effect of chloride additives is studied on the bulk and surface defects of the mixed cation and halide PSCs. It is found that using an antisolvent technique, the perovskite film is divided into two layers, i.e., a bottom layer with large grains and a thin capping layer with small grains. The addition of formamidinium chloride (FACl) into the precursor solution removes the small‐grained perovskite capping layer and suppresses the formation of bulk and surface defects, providing a perovskite film with enhanced crystallinity and large grain size of over 1 µm. Time‐resolved photoluminescence measurements show longer lifetimes for perovskite films modified by FACl and subsequently passivated by 1‐adamantylamine hydrochloride as compared to the reference sample. Impedance spectroscopy measurements show that these treatments reduce the recombination in the PSCs, leading to a champion device with power conversion efficiency (PCE) of 21.2%, an open circuit voltage of 1152 mV and negligible hysteresis. The Cl treated PSC also shows improved operational stability with only 12% PCE loss after 700 h under continuous illumination.

     
    more » « less
  4. Abstract

    Fluorescence imaging is a powerful tool for studying biologically relevant macromolecules, but its applicability is often limited by the fluorescent probe, which must demonstrate both high site‐specificity and emission efficiency. In this regard, M13 virus, a versatile biological scaffold, has previously been used to both assemble fluorophores on its viral capsid with molecular precision and to also target a variety of cells. Although M13‐fluorophore systems are highly selective, these complexes typically suffer from poor molecular detection limits due to low absorption cross‐sections and moderate quantum yields. To overcome these challenges, a coassembly of the M13 virus, cyanine 3 dye, and silver nanoparticles is developed to create a fluorescent tag capable of binding with molecular precision with high emissivity. Enhanced emission of cyanine 3 of up to 24‐fold is achieved by varying nanoparticle size and particle‐fluorophore separation. In addition, it is found that the fluorescence enhancement increases with increasing dye surface density on the viral capsid. Finally, this highly fluorescent probe is applied for in vitro staining ofE. coli. These results demonstrate an inexpensive framework for achieving tuned fluorescence enhancements. The methodology developed in this work is potentially amendable to fluorescent detection of a wide range of M13/cell combinations.

     
    more » « less